SOCIAL NETWORKING

Social Media Platform

Scalable Social Networking Experience

Enterprise-scale social media platform serving 1M+ users with real-time messaging, intelligent content feeds, advanced recommendation algorithms, and robust moderation systems. Built with Ruby on Rails, PostgreSQL, and Redis for high-performance social networking.

1M+ Active Users
10M+ Daily Posts
95% User Engagement
<100ms Feed Load Time
Ruby on Rails 7 PostgreSQL 15 Redis 7.0 Sidekiq Action Cable Elasticsearch AWS S3 CloudFront CDN

Social Platform Architecture

Scalable Ruby on Rails architecture optimized for social interactions

┌─────────────────────────────────────┐ │ CloudFront CDN │ │ Global Edge Locations │ Assets │ └─────────────────┬───────────────────┘ │ ┌─────────────────▼───────────────────┐ │ Application Load Balancer │ │ SSL Termination │ Health Checks │ └─────────────────┬───────────────────┘ │ ┌─────────────────▼───────────────────┐ │ Rails Application Servers │ │ Puma │ Auto-scaling │ Sessions │ └─────────────────┬───────────────────┘ │ ┌───────────────┼───────────────┐ │ │ │ ┌─▼───────┐ ┌─────▼─────┐ ┌───────▼─┐ │User │ │ Post │ │Message │ │Service │ │ Service │ │Service │ │(Rails) │ │ (Rails) │ │(Rails) │ └─────────┘ └───────────┘ └─────────┘ │ │ │ ┌─▼───────┐ ┌─────▼─────┐ ┌───────▼─┐ │Feed │ │Notification│ │Search │ │Service │ │ Service │ │Service │ │(Rails) │ │ (Rails) │ │(Rails) │ └─────────┘ └───────────┘ └─────────┘ │ │ │ └───────────────┼───────────────┘ │ ┌─────────────────▼───────────────────┐ │ Background Processing │ │ Sidekiq │ Action Cable │ Jobs │ └─────────────────┬───────────────────┘ │ ┌─────────────────▼───────────────────┐ │ Data Storage │ │PostgreSQL│Redis│Elasticsearch│S3 │ └─────────────────────────────────────┘
💎

Ruby on Rails Framework

High-performance Rails 7 application with advanced caching, database optimization, and scalable architecture serving millions of social interactions daily.

📱

Real-Time Social Features

Action Cable WebSocket connections enabling real-time messaging, live notifications, instant reactions, and collaborative social experiences.

🤖

Intelligent Content Feeds

ML-powered content algorithm with personalized recommendations, trending topics, engagement optimization, and spam detection for enhanced user experience.

🔍

Advanced Search

Elasticsearch-powered search with full-text indexing, real-time suggestions, filtered queries, and intelligent content discovery across the platform.

🛡️

Content Moderation

Automated content moderation with AI-powered detection, community reporting, admin tools, and comprehensive safety measures for user protection.

📊

Social Analytics

Comprehensive analytics dashboard with engagement metrics, user insights, content performance, and data-driven social networking optimization.

Technical Implementation

Advanced Rails patterns and social networking architecture

Rails Social Feed Controller with Caching
class FeedsController < ApplicationController
  before_action :authenticate_user!
  before_action :set_user_preferences
  
  # Optimized social feed with intelligent caching
  def show
    @feed_posts = Rails.cache.fetch(feed_cache_key, expires_in: 5.minutes) do
      generate_personalized_feed
    end
    
    # Track feed impression for analytics
    FeedImpressionJob.perform_later(current_user.id, @feed_posts.map(&:id))
    
    respond_to do |format|
      format.html
      format.json { render json: serialize_feed_posts(@feed_posts) }
      format.turbo_stream { render :show }
    end
  end
  
  private
  
  def generate_personalized_feed
    # Multi-source feed generation with scoring algorithm
    friend_posts = Post.joins(user: :friendships)
                      .where(friendships: { friend_id: current_user.id, status: 'accepted' })
                      .includes(:user, :attachments, :reactions)
                      .recent
    
    followed_posts = Post.joins(user: :follows)
                        .where(follows: { follower_id: current_user.id })
                        .includes(:user, :attachments, :reactions)
                        .recent
    
    # Combine and score posts using machine learning
    all_posts = (friend_posts + followed_posts).uniq
    scored_posts = FeedScoringService.new(current_user, all_posts).calculate_scores
    
    # Apply user preferences and filters
    filtered_posts = apply_content_filters(scored_posts)
    
    # Paginate results
    Kaminari.paginate_array(filtered_posts)
            .page(params[:page])
            .per(20)
  end
  
  def apply_content_filters(posts)
    posts = posts.reject { |post| blocked_content?(post) }
    posts = posts.select { |post| matches_interests?(post) } if @user_preferences.interest_filtering?
    posts = posts.reject { |post| seen_recently?(post) }
    
    posts.sort_by { |post| -post.calculated_score }
  end
  
  def feed_cache_key
    # Intelligent cache key with user context
    "user_feed:#{current_user.id}:#{current_user.updated_at.to_i}:#{Time.current.to_i / 5.minutes}"
  end
end

# Advanced feed scoring service with ML integration
class FeedScoringService
  attr_reader :user, :posts
  
  def initialize(user, posts)
    @user = user
    @posts = posts
  end
  
  def calculate_scores
    posts.map do |post|
      post.calculated_score = calculate_post_score(post)
      post
    end
  end
  
  private
  
  def calculate_post_score(post)
    base_score = 1.0
    
    # Recency score (fresher content scores higher)
    recency_score = calculate_recency_score(post.created_at)
    
    # Engagement score (likes, comments, shares)
    engagement_score = calculate_engagement_score(post)
    
    # User relationship score (closer friends score higher)
    relationship_score = calculate_relationship_score(post.user)
    
    # Content relevance score (based on user interests)
    relevance_score = calculate_relevance_score(post)
    
    # Diversity penalty (avoid showing too much from same user)
    diversity_penalty = calculate_diversity_penalty(post.user)
    
    # ML model prediction
    ml_score = get_ml_prediction(post)
    
    # Weighted final score
    final_score = (
      base_score * 0.1 +
      recency_score * 0.2 +
      engagement_score * 0.25 +
      relationship_score * 0.2 +
      relevance_score * 0.15 +
      ml_score * 0.1
    ) * diversity_penalty
    
    final_score.round(4)
  end
  
  def calculate_engagement_score(post)
    likes_weight = 1.0
    comments_weight = 2.0
    shares_weight = 3.0
    
    total_engagement = (
      post.reactions.likes.count * likes_weight +
      post.comments.count * comments_weight +
      post.shares.count * shares_weight
    )
    
    # Normalize based on post age
    hours_old = (Time.current - post.created_at) / 1.hour
    normalized_engagement = total_engagement / (1 + hours_old * 0.1)
    
    # Apply logarithmic scaling to prevent viral posts from dominating
    Math.log(1 + normalized_engagement)
  end
  
  def get_ml_prediction(post)
    # Integration with ML model for engagement prediction
    features = extract_post_features(post)
    MLPredictionService.predict_engagement(user.id, features)
  rescue => e
    Rails.logger.error "ML prediction failed: #{e.message}"
    0.5 # fallback score
  end
end

# Real-time messaging with Action Cable
class MessagesController < ApplicationController
  before_action :authenticate_user!
  
  def create
    @conversation = current_user.conversations.find(params[:conversation_id])
    @message = @conversation.messages.build(message_params)
    @message.sender = current_user
    
    if @message.save
      # Broadcast to conversation channel
      ConversationChannel.broadcast_to(
        @conversation,
        {
          type: 'new_message',
          message: MessageSerializer.new(@message).as_json,
          sender: UserSerializer.new(current_user, scope: :basic).as_json
        }
      )
      
      # Send push notifications to offline users
      notify_conversation_participants
      
      # Update conversation timestamp
      @conversation.touch(:last_activity_at)
      
      render json: { status: 'success', message: @message }
    else
      render json: { status: 'error', errors: @message.errors }
    end
  end
  
  private
  
  def notify_conversation_participants
    offline_participants = @conversation.participants
                                      .where.not(id: current_user.id)
                                      .offline
    
    offline_participants.each do |participant|
      PushNotificationJob.perform_later(
        participant.id,
        {
          title: "#{current_user.display_name} sent you a message",
          body: @message.body.truncate(100),
          action_url: conversation_path(@conversation)
        }
      )
    end
  end
  
  def message_params
    params.require(:message).permit(:body, :message_type, attachments: [])
  end
end
Real-time Social Features with Action Cable
# app/channels/social_activity_channel.rb
class SocialActivityChannel < ApplicationCable::Channel
  def subscribed
    stream_from "social_activity:#{current_user.id}"
    stream_from "global_activity" if current_user.admin?
    
    # Track user online status
    current_user.update(last_seen_at: Time.current, online: true)
    
    # Broadcast user online status to friends
    broadcast_online_status
  end
  
  def unsubscribed
    current_user.update(online: false)
    broadcast_offline_status
  end
  
  def react_to_post(data)
    post = Post.find(data['post_id'])
    reaction_type = data['reaction_type']
    
    # Toggle reaction
    existing_reaction = current_user.reactions.find_by(post: post)
    
    if existing_reaction
      if existing_reaction.reaction_type == reaction_type
        existing_reaction.destroy
        action = 'removed'
      else
        existing_reaction.update(reaction_type: reaction_type)
        action = 'changed'
      end
    else
      current_user.reactions.create(post: post, reaction_type: reaction_type)
      action = 'added'
    end
    
    # Real-time broadcast to all viewers of this post
    PostChannel.broadcast_to(
      post,
      {
        type: 'reaction_update',
        action: action,
        reaction_type: reaction_type,
        user: UserSerializer.new(current_user, scope: :basic).as_json,
        total_reactions: post.reactions.group(:reaction_type).count
      }
    )
    
    # Send notification to post author (if not self-reaction)
    unless post.user == current_user
      NotificationJob.perform_later(
        post.user.id,
        {
          type: 'post_reaction',
          actor: current_user,
          post: post,
          reaction_type: reaction_type
        }
      )
    end
  end
  
  def start_typing(data)
    conversation_id = data['conversation_id']
    
    # Broadcast typing indicator to conversation participants
    ConversationChannel.broadcast_to(
      Conversation.find(conversation_id),
      {
        type: 'typing_start',
        user_id: current_user.id,
        user_name: current_user.display_name
      }
    )
  end
  
  def stop_typing(data)
    conversation_id = data['conversation_id']
    
    ConversationChannel.broadcast_to(
      Conversation.find(conversation_id),
      {
        type: 'typing_stop',
        user_id: current_user.id
      }
    )
  end
  
  private
  
  def broadcast_online_status
    # Notify friends about online status
    current_user.friends.online.each do |friend|
      ActionCable.server.broadcast(
        "social_activity:#{friend.id}",
        {
          type: 'friend_online',
          user: UserSerializer.new(current_user, scope: :basic).as_json
        }
      )
    end
  end
  
  def broadcast_offline_status
    current_user.friends.online.each do |friend|
      ActionCable.server.broadcast(
        "social_activity:#{friend.id}",
        {
          type: 'friend_offline',
          user_id: current_user.id
        }
      )
    end
  end
end

# Background job for feed generation optimization
class OptimizeFeedJob < ApplicationJob
  queue_as :default
  
  def perform(user_id)
    user = User.find(user_id)
    
    # Pre-generate and cache personalized feed
    feed_posts = FeedGenerationService.new(user).generate_optimized_feed
    
    # Cache the pre-generated feed
    Rails.cache.write(
      "optimized_feed:#{user.id}",
      feed_posts,
      expires_in: 30.minutes
    )
    
    # Update user engagement metrics
    UserEngagementMetrics.update_feed_metrics(user, feed_posts)
    
    # Schedule next optimization
    OptimizeFeedJob.set(wait: 1.hour).perform_later(user_id)
  end
end

# Advanced content moderation service
class ContentModerationService
  include HTTParty
  
  attr_reader :content, :content_type
  
  def initialize(content, content_type = :text)
    @content = content
    @content_type = content_type
  end
  
  def moderate
    results = {}
    
    # Run multiple moderation checks
    results[:toxicity] = check_toxicity
    results[:spam] = check_spam
    results[:inappropriate_content] = check_inappropriate_content
    results[:hate_speech] = check_hate_speech
    
    # Combine results and determine action
    overall_score = calculate_overall_risk_score(results)
    
    {
      approved: overall_score < 0.3,
      flagged: overall_score >= 0.3 && overall_score < 0.7,
      blocked: overall_score >= 0.7,
      confidence: overall_score,
      details: results
    }
  end
  
  private
  
  def check_toxicity
    # Integration with external toxicity detection API
    response = self.class.post(
      'https://api.perspectiveapi.com/v1alpha1/comments:analyze',
      {
        headers: { 'Content-Type' => 'application/json' },
        body: {
          requestedAttributes: { TOXICITY: {} },
          comment: { text: content }
        }.to_json
      }
    )
    
    response.dig('attributeScores', 'TOXICITY', 'summaryScore', 'value') || 0
  rescue => e
    Rails.logger.error "Toxicity check failed: #{e.message}"
    0
  end
  
  def check_spam
    # Custom spam detection logic
    spam_indicators = [
      excessive_caps?,
      repeated_patterns?,
      suspicious_links?,
      promotional_content?
    ]
    
    spam_indicators.count(true).to_f / spam_indicators.length
  end
  
  def calculate_overall_risk_score(results)
    weights = {
      toxicity: 0.3,
      spam: 0.2,
      inappropriate_content: 0.3,
      hate_speech: 0.2
    }
    
    weighted_score = results.sum { |key, value| weights[key] * value }
    [weighted_score, 1.0].min
  end
end

Platform Performance

Real-world metrics demonstrating social platform scalability

67ms
Feed Load Time (P95)
Personalized content delivery
100K
Concurrent WebSocket Connections
Real-time messaging
97%
Content Moderation Accuracy
Automated safety systems
99.9%
Platform Uptime
24/7 social connectivity

Social Impact

Building meaningful connections through technology

1M+
Active Users
Global social community
95%
User Engagement Rate
Daily active participation
80%
User Retention (30-day)
Strong community building
10M+
Daily Social Interactions
Messages, posts, reactions

Ready to Build Social Platforms?

Interested in creating scalable social networking applications? Let's discuss how these Ruby on Rails patterns can power your next social platform innovation.