DATA PLATFORM

Weather Data Platform

Real-Time Weather Analytics & Forecasting

High-performance weather data platform processing 1M+ API calls daily with real-time analytics, machine learning forecasting, and comprehensive weather visualization. Built with Python Django, Celery task processing, and advanced data pipeline architecture for enterprise weather services.

1M+ Daily API Calls
500+ Weather Stations
95% Forecast Accuracy
<100ms API Response Time
Python 3.11 Django 4.2 Celery 5.3 Redis 7.0 PostgreSQL 15 TensorFlow 2.13 Apache Kafka AWS Lambda

Data Pipeline Architecture

Real-time weather data processing with machine learning forecasting

┌─────────────────────────────────────┐ │ Weather Data Sources │ │ NOAA │ OpenWeather │ AWS IoT │ └─────────────────┬───────────────────┘ │ ┌─────────────────▼───────────────────┐ │ Data Ingestion Layer │ │ Apache Kafka │ AWS Lambda │ └─────────────────┬───────────────────┘ │ ┌─────────────────▼───────────────────┐ │ Django API Gateway │ │ Rate Limiting │ Auth │ Validation │ └─────────────────┬───────────────────┘ │ ┌───────────────┼───────────────┐ │ │ │ ┌─▼───────┐ ┌─────▼─────┐ ┌───────▼─┐ │Data │ │Processing │ │Forecast │ │Service │ │ Engine │ │Service │ │(Django) │ │ (Celery) │ │(TensorFlow)│ └─────────┘ └───────────┘ └─────────┘ │ │ │ ┌─▼───────┐ ┌─────▼─────┐ ┌───────▼─┐ │Cache │ │Analytics │ │Alert │ │Service │ │ Service │ │Service │ │(Redis) │ │(Django) │ │(Celery) │ └─────────┘ └───────────┘ └─────────┘ │ │ │ └───────────────┼───────────────┘ │ ┌─────────────────▼───────────────────┐ │ Data Storage │ │PostgreSQL│TimescaleDB│InfluxDB │ └─────────────────────────────────────┘
🐍

Python Django Framework

High-performance Django REST API with advanced caching, database optimization, and scalable architecture handling millions of weather data requests daily.

📊

Real-Time Data Processing

Celery-powered distributed task processing with Redis message broker enabling real-time weather data ingestion and analysis at scale.

🤖

ML Weather Forecasting

TensorFlow-based machine learning models providing 95% accurate weather predictions with LSTM networks and ensemble forecasting techniques.

High-Performance APIs

Sub-100ms API response times through intelligent caching strategies, database indexing, and optimized query patterns for weather data retrieval.

📈

Advanced Analytics

Comprehensive weather analytics with historical trend analysis, anomaly detection, and predictive insights for business intelligence.

🚨

Smart Weather Alerts

Intelligent weather alerting system with custom thresholds, multi-channel notifications, and emergency response integration.

Technical Implementation

Advanced Python patterns and data processing architecture

Django Weather API with Advanced Caching
from django.views.decorators.cache import cache_page
from django.core.cache import cache
from rest_framework.views import APIView
from rest_framework.response import Response
from celery import shared_task
import pandas as pd
import numpy as np

class WeatherDataAPIView(APIView):
    """High-performance weather data API with intelligent caching"""
    
    @cache_page(60 * 5)  # Cache for 5 minutes
    def get(self, request):
        location = request.query_params.get('location')
        start_date = request.query_params.get('start_date')
        end_date = request.query_params.get('end_date')
        
        # Generate cache key
        cache_key = f"weather_data_{location}_{start_date}_{end_date}"
        
        # Try cache first
        cached_data = cache.get(cache_key)
        if cached_data:
            return Response(cached_data)
        
        # Query database with optimized select
        weather_data = WeatherReading.objects.filter(
            location__iexact=location,
            timestamp__range=[start_date, end_date]
        ).select_related('location').values(
            'timestamp', 'temperature', 'humidity', 
            'pressure', 'wind_speed', 'precipitation'
        )
        
        # Process data with pandas for performance
        df = pd.DataFrame(weather_data)
        if not df.empty:
            # Calculate aggregations
            daily_stats = df.groupby(df['timestamp'].dt.date).agg({
                'temperature': ['min', 'max', 'mean'],
                'humidity': 'mean',
                'precipitation': 'sum'
            }).round(2)
            
            result = {
                'location': location,
                'period': f"{start_date} to {end_date}",
                'readings': weather_data,
                'daily_statistics': daily_stats.to_dict(),
                'total_readings': len(df)
            }
        else:
            result = {'message': 'No data found for specified parameters'}
        
        # Cache result for 15 minutes
        cache.set(cache_key, result, 60 * 15)
        
        return Response(result)

@shared_task
def process_weather_data_batch(data_batch):
    """Celery task for processing weather data in batches"""
    try:
        processed_readings = []
        
        for reading in data_batch:
            # Data validation and cleaning
            cleaned_reading = validate_weather_reading(reading)
            
            # Anomaly detection
            if detect_anomaly(cleaned_reading):
                trigger_alert.delay(cleaned_reading)
            
            # Store processed reading
            weather_reading = WeatherReading.objects.create(**cleaned_reading)
            processed_readings.append(weather_reading.id)
            
            # Update forecasting model if needed
            if should_retrain_model(cleaned_reading):
                retrain_forecast_model.delay(cleaned_reading['location'])
        
        return {
            'status': 'success',
            'processed_count': len(processed_readings),
            'reading_ids': processed_readings
        }
        
    except Exception as e:
        logger.error(f"Error processing weather batch: {str(e)}")
        return {'status': 'error', 'message': str(e)}

def validate_weather_reading(reading):
    """Advanced weather data validation"""
    # Temperature range validation
    if not -50 <= reading.get('temperature', 0) <= 60:
        raise ValueError("Temperature out of valid range")
    
    # Humidity validation
    if not 0 <= reading.get('humidity', 0) <= 100:
        raise ValueError("Humidity out of valid range")
    
    # Pressure validation  
    if not 800 <= reading.get('pressure', 1013) <= 1100:
        raise ValueError("Pressure out of valid range")
    
    return reading
Machine Learning Weather Forecasting
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
import numpy as np
from sklearn.preprocessing import MinMaxScaler

class WeatherForecastModel:
    """TensorFlow LSTM model for weather forecasting"""
    
    def __init__(self):
        self.model = None
        self.scaler = MinMaxScaler()
        self.sequence_length = 24  # 24 hours of data
        
    def build_model(self, input_features=5):
        """Build LSTM neural network for weather prediction"""
        self.model = Sequential([
            LSTM(128, return_sequences=True, 
                 input_shape=(self.sequence_length, input_features)),
            Dropout(0.2),
            
            LSTM(64, return_sequences=True),
            Dropout(0.2),
            
            LSTM(32, return_sequences=False),
            Dropout(0.2),
            
            Dense(16, activation='relu'),
            Dense(input_features, activation='linear')  # Predict all features
        ])
        
        self.model.compile(
            optimizer='adam',
            loss='mse',
            metrics=['mae']
        )
        
        return self.model
    
    def prepare_training_data(self, weather_data):
        """Prepare time series data for LSTM training"""
        # Convert to numpy array
        data = np.array(weather_data)
        
        # Normalize features
        scaled_data = self.scaler.fit_transform(data)
        
        # Create sequences
        X, y = [], []
        for i in range(self.sequence_length, len(scaled_data)):
            X.append(scaled_data[i-self.sequence_length:i])
            y.append(scaled_data[i])
        
        return np.array(X), np.array(y)
    
    def train(self, weather_data, epochs=100, batch_size=32):
        """Train the forecasting model"""
        X, y = self.prepare_training_data(weather_data)
        
        # Split data
        split_idx = int(0.8 * len(X))
        X_train, X_test = X[:split_idx], X[split_idx:]
        y_train, y_test = y[:split_idx], y[split_idx:]
        
        # Train model
        history = self.model.fit(
            X_train, y_train,
            batch_size=batch_size,
            epochs=epochs,
            validation_data=(X_test, y_test),
            verbose=1
        )
        
        return history
    
    def predict_weather(self, recent_data, hours_ahead=24):
        """Generate weather forecast"""
        # Prepare input data
        scaled_input = self.scaler.transform(recent_data)
        input_sequence = scaled_input[-self.sequence_length:].reshape(1, self.sequence_length, -1)
        
        predictions = []
        current_sequence = input_sequence.copy()
        
        # Generate multi-step forecast
        for _ in range(hours_ahead):
            next_prediction = self.model.predict(current_sequence)
            predictions.append(next_prediction[0])
            
            # Update sequence for next prediction
            current_sequence = np.roll(current_sequence, -1, axis=1)
            current_sequence[0, -1, :] = next_prediction[0]
        
        # Inverse transform predictions
        forecast = self.scaler.inverse_transform(predictions)
        
        return forecast

@shared_task
def generate_daily_forecast(location_id):
    """Celery task to generate daily weather forecast"""
    try:
        # Get recent weather data
        recent_data = WeatherReading.objects.filter(
            location_id=location_id,
            timestamp__gte=timezone.now() - timedelta(days=7)
        ).values_list(
            'temperature', 'humidity', 'pressure', 
            'wind_speed', 'precipitation'
        )
        
        # Load trained model
        forecast_model = WeatherForecastModel()
        forecast_model.load_model(f'models/weather_model_{location_id}.h5')
        
        # Generate 24-hour forecast
        forecast = forecast_model.predict_weather(recent_data, hours_ahead=24)
        
        # Store forecast in database
        for i, prediction in enumerate(forecast):
            forecast_time = timezone.now() + timedelta(hours=i+1)
            WeatherForecast.objects.create(
                location_id=location_id,
                forecast_time=forecast_time,
                temperature=prediction[0],
                humidity=prediction[1],
                pressure=prediction[2],
                wind_speed=prediction[3],
                precipitation=prediction[4],
                confidence_score=calculate_confidence(prediction)
            )
        
        return {'status': 'success', 'forecasts_generated': len(forecast)}
        
    except Exception as e:
        logger.error(f"Forecast generation failed: {str(e)}")
        return {'status': 'error', 'message': str(e)}

Performance Excellence

Real-world metrics demonstrating platform capabilities

87ms
API Response Time (P95)
Weather data queries
1.2M
Daily API Requests
Peak traffic handling
95.3%
Forecast Accuracy
24-hour predictions
99.7%
Data Processing Uptime
Continuous operations

Business Impact

Delivering value through weather intelligence

500+
Weather Stations Connected
Global coverage network
35%
Cost Reduction
Weather-related planning optimization
89%
Alert Accuracy
Severe weather warnings
2.5TB
Daily Data Processing
Weather information ingested

Ready to Build Data Platforms?

Interested in creating high-performance data processing systems? Let's discuss how these Python and machine learning patterns can transform your data infrastructure.